Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of the leaf proteome by inoculation of Populus × canescens with two Paxillus involutus isolates differing in root colonization rates.

Identifieur interne : 000740 ( Main/Exploration ); précédent : 000739; suivant : 000741

Regulation of the leaf proteome by inoculation of Populus × canescens with two Paxillus involutus isolates differing in root colonization rates.

Auteurs : Agnieszka Szuba [Pologne] ; Łukasz Marczak [Pologne] ; Leszek Karli Ski [Pologne] ; Joanna Mucha [Pologne] ; Dominik Tomaszewski [Pologne]

Source :

RBID : pubmed:31456074

Descripteurs français

English descriptors

Abstract

During ectomycorrhizal symbioses, up to 30% of the carbon produced in leaves may be translocated to the fungal partner. Given that the leaf response to root colonization is largely unknown, we performed a leaf proteome analysis of Populus × canescens inoculated in vitro with two isolates of Paxillus involutus significantly differing in root colonization rates (65 ± 7% vs 14 ± 7%), together with plant growth and leaf biochemistry analyses to determine the response of plant leaves to ectomycorrhizal root colonization. The isolate that more efficiently colonized roots (isolate H) affected 9.1% of the leaf proteome compared with control plants. Simultaneously, ectomycorrhiza in isolate H-inoculated plants led to improved plant growth and an increased abundance of leaf proteins involved in protein turnover, stress response, carbohydrate metabolism, and photosynthesis. The protein increment was also correlated with increases in chlorophyll, foliar carbon, and carbohydrate contents. Although inoculation of P. × canescens roots with the other P. involutus isolate (isolate L, characterized by a low root colonization ratio) affected 6.8% of the leaf proteome compared with control plants, most proteins were downregulated. The proteomic signals of increased carbohydrate biosynthesis were not detected, and carbohydrate, carbon, and leaf pigment levels and plant biomass did not differ from the noninoculated plants. Our results revealed that the upregulation of the photosynthetic protein abundance and levels of leaf carbohydrate are positively related to rates of root colonization. Upregulation of photosynthetic proteins, chlorophyll, and leaf carbohydrate levels in ectomycorrhizal plants was positively related to root colonization rates and resulted in increased carbon translocation and sequestration underground.

DOI: 10.1007/s00572-019-00910-5
PubMed: 31456074


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of the leaf proteome by inoculation of Populus × canescens with two Paxillus involutus isolates differing in root colonization rates.</title>
<author>
<name sortKey="Szuba, Agnieszka" sort="Szuba, Agnieszka" uniqKey="Szuba A" first="Agnieszka" last="Szuba">Agnieszka Szuba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland. agnieszkalapa@wp.pl.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marczak, Lukasz" sort="Marczak, Lukasz" uniqKey="Marczak L" first="Łukasz" last="Marczak">Łukasz Marczak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karli Ski, Leszek" sort="Karli Ski, Leszek" uniqKey="Karli Ski L" first="Leszek" last="Karli Ski">Leszek Karli Ski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mucha, Joanna" sort="Mucha, Joanna" uniqKey="Mucha J" first="Joanna" last="Mucha">Joanna Mucha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tomaszewski, Dominik" sort="Tomaszewski, Dominik" uniqKey="Tomaszewski D" first="Dominik" last="Tomaszewski">Dominik Tomaszewski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31456074</idno>
<idno type="pmid">31456074</idno>
<idno type="doi">10.1007/s00572-019-00910-5</idno>
<idno type="wicri:Area/Main/Corpus">000734</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000734</idno>
<idno type="wicri:Area/Main/Curation">000734</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000734</idno>
<idno type="wicri:Area/Main/Exploration">000734</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of the leaf proteome by inoculation of Populus × canescens with two Paxillus involutus isolates differing in root colonization rates.</title>
<author>
<name sortKey="Szuba, Agnieszka" sort="Szuba, Agnieszka" uniqKey="Szuba A" first="Agnieszka" last="Szuba">Agnieszka Szuba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland. agnieszkalapa@wp.pl.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marczak, Lukasz" sort="Marczak, Lukasz" uniqKey="Marczak L" first="Łukasz" last="Marczak">Łukasz Marczak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań</wicri:regionArea>
<wicri:noRegion>Poznań</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karli Ski, Leszek" sort="Karli Ski, Leszek" uniqKey="Karli Ski L" first="Leszek" last="Karli Ski">Leszek Karli Ski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mucha, Joanna" sort="Mucha, Joanna" uniqKey="Mucha J" first="Joanna" last="Mucha">Joanna Mucha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tomaszewski, Dominik" sort="Tomaszewski, Dominik" uniqKey="Tomaszewski D" first="Dominik" last="Tomaszewski">Dominik Tomaszewski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik</wicri:regionArea>
<wicri:noRegion>Kórnik</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mycorrhiza</title>
<idno type="eISSN">1432-1890</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Photosynthesis (genetics)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Populus (microbiology)</term>
<term>Proteome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (physiologie)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Mycorhizes (physiologie)</term>
<term>Photosynthèse (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéome (MeSH)</term>
<term>Racines de plante (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Photosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Protéome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During ectomycorrhizal symbioses, up to 30% of the carbon produced in leaves may be translocated to the fungal partner. Given that the leaf response to root colonization is largely unknown, we performed a leaf proteome analysis of Populus × canescens inoculated in vitro with two isolates of Paxillus involutus significantly differing in root colonization rates (65 ± 7% vs 14 ± 7%), together with plant growth and leaf biochemistry analyses to determine the response of plant leaves to ectomycorrhizal root colonization. The isolate that more efficiently colonized roots (isolate H) affected 9.1% of the leaf proteome compared with control plants. Simultaneously, ectomycorrhiza in isolate H-inoculated plants led to improved plant growth and an increased abundance of leaf proteins involved in protein turnover, stress response, carbohydrate metabolism, and photosynthesis. The protein increment was also correlated with increases in chlorophyll, foliar carbon, and carbohydrate contents. Although inoculation of P. × canescens roots with the other P. involutus isolate (isolate L, characterized by a low root colonization ratio) affected 6.8% of the leaf proteome compared with control plants, most proteins were downregulated. The proteomic signals of increased carbohydrate biosynthesis were not detected, and carbohydrate, carbon, and leaf pigment levels and plant biomass did not differ from the noninoculated plants. Our results revealed that the upregulation of the photosynthetic protein abundance and levels of leaf carbohydrate are positively related to rates of root colonization. Upregulation of photosynthetic proteins, chlorophyll, and leaf carbohydrate levels in ectomycorrhizal plants was positively related to root colonization rates and resulted in increased carbon translocation and sequestration underground.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31456074</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1890</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2019</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Mycorrhiza</Title>
<ISOAbbreviation>Mycorrhiza</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of the leaf proteome by inoculation of Populus × canescens with two Paxillus involutus isolates differing in root colonization rates.</ArticleTitle>
<Pagination>
<MedlinePgn>503-517</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00572-019-00910-5</ELocationID>
<Abstract>
<AbstractText>During ectomycorrhizal symbioses, up to 30% of the carbon produced in leaves may be translocated to the fungal partner. Given that the leaf response to root colonization is largely unknown, we performed a leaf proteome analysis of Populus × canescens inoculated in vitro with two isolates of Paxillus involutus significantly differing in root colonization rates (65 ± 7% vs 14 ± 7%), together with plant growth and leaf biochemistry analyses to determine the response of plant leaves to ectomycorrhizal root colonization. The isolate that more efficiently colonized roots (isolate H) affected 9.1% of the leaf proteome compared with control plants. Simultaneously, ectomycorrhiza in isolate H-inoculated plants led to improved plant growth and an increased abundance of leaf proteins involved in protein turnover, stress response, carbohydrate metabolism, and photosynthesis. The protein increment was also correlated with increases in chlorophyll, foliar carbon, and carbohydrate contents. Although inoculation of P. × canescens roots with the other P. involutus isolate (isolate L, characterized by a low root colonization ratio) affected 6.8% of the leaf proteome compared with control plants, most proteins were downregulated. The proteomic signals of increased carbohydrate biosynthesis were not detected, and carbohydrate, carbon, and leaf pigment levels and plant biomass did not differ from the noninoculated plants. Our results revealed that the upregulation of the photosynthetic protein abundance and levels of leaf carbohydrate are positively related to rates of root colonization. Upregulation of photosynthetic proteins, chlorophyll, and leaf carbohydrate levels in ectomycorrhizal plants was positively related to root colonization rates and resulted in increased carbon translocation and sequestration underground.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Szuba</LastName>
<ForeName>Agnieszka</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6278-3897</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland. agnieszkalapa@wp.pl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marczak</LastName>
<ForeName>Łukasz</ForeName>
<Initials>Ł</Initials>
<AffiliationInfo>
<Affiliation>Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Karliński</LastName>
<ForeName>Leszek</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mucha</LastName>
<ForeName>Joanna</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tomaszewski</LastName>
<ForeName>Dominik</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DEC-2011/03/D/NZ9/05500</GrantID>
<Agency>Narodowe Centrum Nauki</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mycorrhiza</MedlineTA>
<NlmUniqueID>100955036</NlmUniqueID>
<ISSNLinking>0940-6360</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="Y">Proteome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ectomycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Leaf carbohydrates</Keyword>
<Keyword MajorTopicYN="N">Plant biometrics</Keyword>
<Keyword MajorTopicYN="N">Protein turnover</Keyword>
<Keyword MajorTopicYN="N">Root colonization rate</Keyword>
<Keyword MajorTopicYN="N">Stress response</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31456074</ArticleId>
<ArticleId IdType="doi">10.1007/s00572-019-00910-5</ArticleId>
<ArticleId IdType="pii">10.1007/s00572-019-00910-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Jul;48(7):596-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20188581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2014 May;16(3):550-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24119201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Jan;30(1):32-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2005 Jan;15(1):65-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15558328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Jan;9(2):420-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19072729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 May;9(5):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15130550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Oct 2;290(40):24222-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26283786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):91-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Dec;208(4):1169-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26171947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 Oct 15;169(15):1454-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Jul;81(3):802-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 May 05;11:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21545723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Jun 19;1100(3):217-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1610875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 Jan;21(1):35-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20393757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2013 Dec;34(22-23):3234-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24347272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Oct;242(4):1025-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22761694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Oct;222(2):258-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15883833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Nov;21(11):937-950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27514454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Apr;89(4):1032-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 May;156(1):3-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Aug 27;4:332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Dec 10;5:18031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26658758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jul 12;288(28):20607-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2015 Aug 3;126:200-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26070399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):292-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2011 Sep 6;74(10):1829-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21669304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):82-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17078984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Jun;27(6):546-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24548064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2011 Aug 25;11:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 12;333(6044):880-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21836016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):1053-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):444-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21530366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):845-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16606633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2013 Dec 6;94:289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24120527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2014 Jan-Feb;32(1):87-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23827783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Apr;176(4):2639-2656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29439210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(7):1597-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Feb;27(2):109-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27714470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1991-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854859</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Szuba, Agnieszka" sort="Szuba, Agnieszka" uniqKey="Szuba A" first="Agnieszka" last="Szuba">Agnieszka Szuba</name>
</noRegion>
<name sortKey="Karli Ski, Leszek" sort="Karli Ski, Leszek" uniqKey="Karli Ski L" first="Leszek" last="Karli Ski">Leszek Karli Ski</name>
<name sortKey="Marczak, Lukasz" sort="Marczak, Lukasz" uniqKey="Marczak L" first="Łukasz" last="Marczak">Łukasz Marczak</name>
<name sortKey="Mucha, Joanna" sort="Mucha, Joanna" uniqKey="Mucha J" first="Joanna" last="Mucha">Joanna Mucha</name>
<name sortKey="Tomaszewski, Dominik" sort="Tomaszewski, Dominik" uniqKey="Tomaszewski D" first="Dominik" last="Tomaszewski">Dominik Tomaszewski</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000740 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000740 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31456074
   |texte=   Regulation of the leaf proteome by inoculation of Populus × canescens with two Paxillus involutus isolates differing in root colonization rates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31456074" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020